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A Numerically Efficient Finite-Element
Formulation for the General Waveguide

Problem Without Spurious Modes

JAN A. M. SVEDIN, STUDENT MEMBER, IEEE

Abstract —A numerically efficient finite-element procedure showing no

spurious modes is presented for the anafysis of propagation characteristics

in arbitrarily shaped metal wavegnides loaded with linear materials of

arbhrary complex tensor permittivity and Permeability. The method is

straightforwardly derived from the first-order Maxwell curl equations and

comprises both the transversal and longitudinal components of the electric

and magnetic fields. Hence, afl neeessary boundary conditions on the

tangential field components are a priori satisfied by the trial functions.

With this formulation an absence of spurious modes has been found.

Furthermore, by also imposing the addhiomd boundary conditions on the

normal components of the magnetic induction and electric dkplacement

fields, the dimension of tbe resulting matrix equation maybe significantly

reduced. In this formulation both the propagation constant and the fre-

quency may be treated as an eigenvahre of the resnfting sparse generaiiied

eigenvalue problem. For the fundamental modes, both the convergence

order and the accuracy of the presented method are found to be signifi-

cantly bigher than those of comparable methods when appfied to some

numerical examples.

I. INTRODUCTION

T HE FINITE-ELEMENT method has been widely used

during the last two decades in the analysis of wave-

guide components [1]–[9]. With this method propagation

characteristics of arbitrarily shaped waveguides of differ-

ent composition are easily attainable. One drawback that

has limited the use of the method, however, has been the

spurious (nonphysical) solutions [1], [2], [4], [5] apparent in

some of the earlier formulations of the method.

The spurious solutions satisfy the finite-element equa-

tions, but not even approximately the original boundary-

value problem. The problem can be avoided by the use of

a method based on the H-field formulation that is modi-

fied by an enforcement of the constraint v. H = O on the

trial functions [7] (or an analogous E-field version modi-

fied by the constraint v D = O [19]). This constraint has

been empirically found to suppress the spurious modes

present in this formulation. However, the inclusion of the

divergence-free constraint increases the numerical com-

plexity of the resulting eigenvalue problem by decreasing

the matrix sparsity, which is important for the possibility

of handling large-size problems in reasonable amounts of

time and memory [4], [10]. The method has recently been
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generalized to lossy problems [9], but is restricted to mate-

rials with a scalar permeability, i.e., El a B (or scalar

permittivity for the E version, i.e., E a l)).

A different approach, in which the spurious solutions

are avoided, is formulated in terms of the transversal field

components et and hf [8]. Here, the spurious modes are

found to possess complex propagation constants and may

therefore be discriminated when considering propagating

modes in nondissipative waveguides.

In this paper a numerically efficient finite-element for-

mulation is presented that shows no spurious modes and

which may be used to analyze problems involving linear

materials of arbitrary complex tensor permittivity and

permeability. The method is based on a mixed-field formu-

lation [15]–[17] comprising both the transversal and longi-

tudinal components of E and H. It is straightforwardly

derived from the Maxwell curl equations, and as all field

components are considered, all the necessary interelement

and global boundary conditions on the tangential field

components n X E and n X H are easily imposed. The

higher number of field components involved in this formu-

lation does not necessarily increase the dimension of the

final eigenvalue problem (for a given mesh division) as

more boundary conditions may be easily imposed on the

trial functions. Hence, the continuity of the normal com-

ponents of the magnetic induction and electric displace-

ment fields (n. B and n. D) may also easily be imposed,

which significantly reduces the final problem size.

On the other hand, in formulations showing spurious

modes, some of the necessary global and interelement

boundary conditions are not a priori satisfied by the trial

functions. In fact, one reported origin of the spurious

modes [2] is that some of the tangential boundary condi-

tions, which are necessary to unambiguously define the

boundary-value problem, are not satisfied. These so-called

natural boundary conditions are only guaranteed to be

approximately satisfied close to the physically correct solu-

tions [11], [12], but nowhere else. Consequently, spurious

solutions may occur, which are not close to any true

solution and do not satisfy all the necessary boundary

conditions. Two types of spurious solutions may be imag-

ined: one type that satisfies the natural boundary condi-

tions in a wide mean-value sense (as a sum of integrals

along the boundary of each element), but pointwise unfor-
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tunately not even approximately [2, p. 556], and another

type that does not satisfy the natural boundary conditions

even in the wide mean-value sense, and hence not the

Maxwell equations within each element.

Numerical examples, using both rectangular and trian-

gular first-order elements, are given for rectangular wave-

guides loaded with dielectric slab, lossy dielectric, and

lossy anisotropic slab and for a circular hollow waveguide.

In none of ‘these cases have spurious modes been found,

and the accuracy for the fundamental modes and the

convergence rate of the eigenvalue are found to be very

high when compared to “the magnetic-field [7], [9] and the

transversal-field formulations [8]. For the first-order rect-

angular and triangular elements considered in this paper,

< 6N and between 3N and 6N unknowns are required,

respectively, for N elements to be compared e.g. with

exactly 8N and 6N unknowns, respectively, required in the

transversal field formulation [8]. Furthermore, by matrix

manipulations of the resulting eigenvalue problem, the

problem dimension may be reduced up to 300 percent, but

with decreased matrix sparsit y as a result.

II. THE BOUNDARY-VALUE PROBLEM

Consider the arbitrarily shaped metal waveguide in Fig.

1, which is composed of several different linear materials,

each described by the arbitrary permittivity and permeabil-

ity tensors ~ and ~. Taking the ordinary harmonic time

dependence eJ”’ as understood, where u is the real angu-

lar frequency, the source-free Maxwell curl equations are

vxE=–jtiB=-jwpOfiH (la)

v x H= juD = juOtE (lb)

where the vectors E, H, B, and D are, respectively, the

electric, magnetic, magnetic induction, and electric dis-

placement field intensities, and COand PO are the vacuum

perrnittivity and permeability, respectively.

At the interface between two contiguous media i and j

the following conditions are satisfied:

nxE, =nXEj (2a)

nxHi=nx HJ (2b)

n. D1=n. t, Ei=n. DJ=n.2jE1 (2C)

n. B,=n. jliH, =n. B,=n. fijH1 (2d)

where n is the interface normal unit vector in the x – y

plane. On the global boundary r, the appropriate bound-

ary conditions are
.

nxE=O (2e)

n. B=n. fiH=O (2f)

on electric walls and

nxH=O (2g)

n. D=n. fE=o (2h)

on magnetic symmetry walls.

The classical boundary-value problem is unambiguously

defined by (la) and (lb) and the tangential boundary

conditions (2a), (2b), (2e), and (2g). Solutions to these

Fig. 1. The considered problem geometry, which consists of an arbitrar-
ily shaped metal waveguide comprising severaf linear materials, each
described by arbitrarily complex 3 x 3 matrices f and jl.

implicitly satisfy the Maxwell divergence equations v. B =

O and v D = O and the normal boundary conditions (2c),

(2d), (2f), and (2h).

The presented method is based on a weak finite-element

formulation of the boundary-value problem. It uses (la)

and (lb) together with an explicit pointwise enforcement

of the boundary conditions (2a), (2b), (2e), and (2g) on the

test and expansion functions. Boundary conditions (2c),

(2d), (2f), and (2h) are also enforced (additionally) in order

to reduce the size of the final matrix equation.

III. THE FINITE ELEMENT FORMULATION

In this paper, the cross section of the waveguide is

divided into a number of finite elements (first-order rect-

angular and triangular elements are considered in the

numerical examples). The six components of the electric

and magnetic fields are then approximated over each ele-

ment in terms of the values at each of the finite-element

nodal points according to

(3)

where ~ = ~‘ – j~” is the complex propagation constant,

Z,{N} {O} {o} {o} {o} {o} -

{O} Z,{N} {O} {o} {o} {o}

{o} {O} jZO{N”} {O} {O} {O}

‘N] = {o} {o} {O} {N} {O} {O}

{o} {o} {o} {O} {N} {O}

{o} {o} {o} {0} {0} ~{N}.

(4)

1/2 is the intrinsic impedance of vac-where 20= (pO/EO)

uum and

[2-1‘H’e=[%‘5){E}, = {i}

The real k X 1 column vector {N} is the element shape

function vector [12], where k is the number of nodal points

on each element; {O} is a k X 1 null vector, and T denotes

a matrix transposition. The column vectors { Ex }=, { Ey },,

{E. },, {~. },, {~y}., ad {Hz},, are k X 1 complex field
vectors representing the nodal point values of, respectively,
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%/zo9 E.v/-zo$ – JE,/zo, H., H.y, and – jHz on each A]={ N}{N}T (11)
element.

The finite-element solutions E and H are weak solu- [B]= {N}d{N}T/ax (12)
tions [12, ch. 4] of (la) and (lb) which should satisfy

Zjl(%,t”(jv XH+ UOW)
e

+ H,&t. (– jv Xl?+ ~po~lf)) dxdy =0 (6)

for all admissible test functions Ete,t and Hte,t where the

appropriate boundary conditions are handled during the

summation X over all elements [11]. Here, the necessary

continuity requirements (2a), (2b), (2e), and (2g) on n x E

and n X H are explicitly imposed, but also the additional

requirements (2c), (2d), (2f), and (2h) on n. B and n. D are

enforced.

Using a Galerkin procedure with the finite-element ex-

pansion (3) for both trial and test functions, there results

the following generalized eigenvalue problem:

()(ti[P]+I?[Q]+[~]) ;:! ={0} (7)

where the column vector is composed of all the unknown

nodal point parameters used to represent E and H in the

waveguide and either /3 or u may be treated as the

eigenvalue. By writing (la) and (lb) in component form,

the quadratic sparse matrices [P], [Q], and [R] are found

tXX[A] CXY[A]

EVX[A] CYY[A]

– jtzX[A] –~fzy[A]

[0] [0]

1[0] [0]

[0] [0]

[c]= {N}d{N}T/ay. (13)

By solving the eigenvalue problem (7), all field compo-

nents for the approximate fields of different eigenmodes in

the waveguide are directly determined and the correspond-

ing eigenvalues ~ (or a) are found.

For loss-free waveguides the regular matrix [P] is Her-

mitian and real for the usual cases, such as dielectrics and

transversely magnetized ferrites. The singular matrices [Q]

and [R] are always Hermitian.

For resonator problems or the calculation of dispersion

relations in problems with frequency-independent loss-free

materials, it is advantageous to treat the frequency o as

the eigenvalue, because (7) may then be reformulated as a

standard eigenvalue problem, which is Hermitian. Then,

very efficient sparse eigenvalue routines are available [10],

[14].

The boundary conditions have been taken care of by

solving (2a)–(2h) for each nodal point [18]. As an example,

consider the arbitrary internal node point j (using triangu-

lar elements) shown in Fig. 2. The boundary conditions

(2a) -(2h) then require the enforcement of

n, XEz=n, XE, _l (14a)

n, XH1=n, xHl_l (14b)

where the E,’s and H,’s represent the values of the electric

j~xz[Al [0] [0]

jcvz[A] [0] [0]

(ZZ[A

[0]
[0]

[0]

[0]

[0]
[0] [0] [0]

PXXIAI PXYIAI jPxz[Al

j~Y, [ A]

Pzz[A]

r [0] [0] [0] [0] -[A] [O] 1

I [01 [01

[0] [0]
[Q]=zO~ j.( [o] [A]

I-[A] [0]

[0] [0]

[

[0] [0]
[0] [0]
[0] [0]

[R]=zo~~f
[0] [0]

I[0] [0]
[C] -[B]

[0] [A] [0] [0]

[0] [0] [0] [0]

[0] [0]

i

[0] [0] ‘Xdy

[0] [0] [0] [0]

[0] [0] [0] [0]

[0] [0] [0] -[c] -
[0] [0] [0] [B]

[0] -[C] [B] [0]

[c] [0] [0] [0]
dx dy

-[B] [0] [0] [0]

[0] [0] [0] [0]

dxdy

(8)

(9)

(lo)
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Fig. 2. The geometry at the internaf node point J, in an arbitrary
triangular-element mesh. Generatly, the elements contain different
materials, each described by constant matrices ?, and II,, i =1,2,. . . . r.

and magnetic fields, respectively, at the node point j in

the element i, and the subscript i runs cyclically modulo r

from 1 to r. In this paper, the additional enforcements of

n,. tlE, =n,. t,_lEi_l (14C)

‘Hni. @iHi=nz. pl_l 1–1 (14d)

are also made. At the external boundary r one obtains

similar homogeneous equations for the global boundary

conditions (2e)–(2h) to be satisfied (perfect electric and

magnetic conductors).

Using (14a) -(14d), it can be concluded that the total

number of unknowns is < 6NP, where NP is the number of

nodal points. This yields for the first-order rectangular

elements < 6N unknowns, where N is the number of

elements. For comparison, the transversal-field method

uses 8N unknowns for the same type of elements. For the

first-order triangular elements, the required number of

unknowns depends on the mean number of nodal points

per triangle, but lies in the range 3N to 6N, to be com-

pared with exactly 6N for the transversal-field formula-

tion [8].

To further demonstrate the difference between the

method outlined here and the earlier formulations with

regard to the fulfillment of boundary conditions, one

should note that the dimension of the eigenvalue problem

(7) may be reduced by rewriting it in terms of fewer
parameters (field components). As an example, write (7)

with /3 as eigenvalue in detailed matrix form:

[P,] [P2] [0] [Rl]
[P,] [1’,] [R,] [0]
[0] [R,] [P,] [P,]

[~.1 [01 [~,1 [~,1

[

[0] [0] [Ql]

+ ~ [0] [0] [0]

[Q,] [01 [o]

[0] [0] [0]

[0]

111)
{Et}

[0] {E. }

[0] {Ht}
= o (15)

[0] {Hz}

where the [ F’,]’s, [Q,] ’s, and [R,]’s are submatrices of oIP],

1711

[Q], ~d [R], respectively (see the Appendix), and the
column vectors {Et }, { Ez }, { Ht ), and {Hz} are parame-

ters used to represent, respectively, the transversal electric,

longitudinal electric, transversal magnetic, and longitudi-

nal magnetic field components for the global assembly of

finite elements. Some elementary matrix algebra applied to

(15) yields the following eigenvalue problem:

where

[A] = [1’,]-[ P,][P4]-1[P3]-[ R,][F’8]-1[R4](17a)

[1?]= -[ P2][1’4]-1[R2]-[ R11[P8]-1[1’7](17b)

[c] = -[ R3][P4]-’[P3]-[F’6][P8]-1[R4](17C)

[D] = [P,] -l R,][P,]-l[R,]-- [P,][P,]-l[P,] (17d)

which is a generalized eigenvalue problem of approxi-

mately 2/3 the order of the original problem (7) and only

comprising parameters related to the transversal field com-

ponents of E and H. Observe that in (16) all the necessary

tangential boundary conditions are explicitly fulfilled (and

additionally also the normal conditions); this is to be

compared with [8], where the conditions on the longitudi-

nal components are ignored. For all isotropic cases and the

special anisotropic cases where (only CXY, c~X, pXY, and

Py. # 0> ‘he ‘atrices [P21) [P31> [P71, and [P61 become ‘ero
with vanishing [B] and [C] as a result. In this case (16)

may be reduced to either one of the two following eigen-

value problems:

([~] -B2[Q’][~]-1[!2, ]){M} =o (lga)

([A1-B’IQ1l[Dl-l[ ~22]){E,} no 08b)
each of dimension only approximately 1/3 that of (7) and

expressed in parameters relatecl to transversal H or

transversal E only. Again observe that in (18a) and (18b)

all the boundary conditions on the tangential components

are incorporated, and additionally also the normal condi-

tions. Equation (18a) has been investigated, and found

to produce the same eigensolutions as (7) (using the rela-

tions between the field components used to obtain (18a)

from (7)).

The most important numerical property of the eigen-

value problem (7) is, however, the 0(1/N ) sparsity of the

matrices, which means that the number of nonzero matrix

elements on each row is almost independent of the dimen-

sion N. For large-size problems sparse eigenvalue codes

may be used ort (7), which will save a significant amount

of CPU time and memory [10]. As more compact forms of

(7) as (16), (ltla), or (18b) are less sparse, it may be

preferable to use (7), despite the roughly 300 percent
reduction of unknowns in, for instance, (18b).

IIV. NUMERICAL IEXAMPLES

In this section examples where analytical solutions exist

[13] are studied in order to demonstrate the strength of the

present method. In this paper first-order rectangular and

triangular elements are used. In order to easily obtain both
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1,5
— Exact solution [13]

“.‘:’’:’’d[’]/-----lIm(l“+

1,0

0,5 -

TEIO

/

/

E= 2.25

—--———2a—

0,0 ‘ I I
1 2 koa 3

Fig. 3. The normalized dispersion relations for the fundamental TEIO
and higher order LSMI, modes in the dielectric-slab-loaded rectangular
waveguide (inset). The finite-element division is 4 X 8 for both finite-
element solutions.

eigenvectors and eigenvalues, the complex generalized

eigenvalue problem routine NAG F02GJF (in double pre-

cision) is used [14]. With this routine, all the eigenvalues

and eigenvectors of (7) are given but the matrix sparsity is

not considered and consequently the more compact forms

(16) or (18) would probably be faster to execute despite the

necessary matrix inversions involved. As pointed out else-

where [4], [10], the use of sparse matrix routines will

considerably reduce the amount of storage and computa-

tional time needed to solve (7). In fact, for very large

problems, even on a supercomputer, the sparsity of the

eigenvalue problem will be of decisive importance.

A. Dielectric Slab in Rectangular Waveguide

As a first example [8], a rectangular waveguide inhomo-

geneously loaded with a dielectric slab is considered. In

Fig. 3 the calculated and exact [13] dispersion relations for

the fundamental TEIO and the higher order LSMII mode

are given for a waveguide of dimensions a x 2a loaded at

one end with a dielectric slab of dimensions a X a and

relative permittivity c = 2.25. The cross section was divided

into 4 X 8 = 32 elements (6 X 32 =192 variables). For com-
parison, the transversal field (e, –fz,) method [8] was coded

using the same type of elements. For this structure using

the same division for both methods, the present method is

more accurate, as is obvious from the dispersion relation

of the LSMII mode, and for both modes the present

method shows an error at least one order of magnitude

smaller (in [8] a similar accuracy with the transversal-field

method is obtained using 64 first-order triangular ele-

ments).

A property of considerable importance in any finite-ele-

ment method is the convergence of the solution as the

problem size increases. Here, the convergence rate, m, of

the relative error, e, of the propagation constant as a

function of the number of nodal points, NP, in the finite-

Present method

Formulation [8]

~o.41 I

10’ 102 Np 10’

Fig. 4. The relative error, \e1, m the finite-element solutions of the
propagation constants, /3, for the modes in Fig. 3, as a function of the
number of nodaf points, NP, in the finite-element mesh, using square
first-order elements.

element mesh is studied, assuming that \e I rX ( NP ) – m for

large enough NP.

In Fig. 4, Ie \ is plotted as a function of the number of

nodal points, using square first-order elements, for the two

modes considered above. For both modes, the present

method is found to converge at least quadratically (m > 2)

as on the other hand the transversal field method only

converges linearly (m = 1).The present method usually

predicts a too high 1~’1, in contrast to the transversal field

method, where the predicted values usually are too low.

B. Lossy Dielectric-Filled Rectangular Waveguide

This example consists of a waveguide of dimensions

a x 2a filled with a lossy dielectric of complex permittivity

( =1.5 – jO.15. The relative errors of the real and imagi-

nary parts of the propagation constant for the fundamen-

tal TEIO and first higher order TEOI modes are compared

to the exact solution [13] in Fig. 5(a) and (b) as a function

of the number of nodal points using square first-order

elements. For comparison, the present results are also

compared to the results obtained by the H-field method

[9], where triangular second-order elements were used.

This comparison is made with respect to the number of
nodal points and should be to the favor of the method

using second-order elements as the higher order elements

are commonly believed to improve the accuracy versus

number of nodal points figure (though reducing the matrix

sparsity). In any case, it shows that the convergence of the

present method also for this structure is roughly quadratic

for both modes, while the other method only converges

roughly linearly. The predicted value of I~“1 is usually too

low when compared to the exact solution (cf. the real part

above).

C. Hollow Circular Waveguide

To confirm the applicability of the present method to

curved boundaries, a hollow circular waveguide of radius a
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10’

0 — Present method 1

\ “ _ Hayata et al [9]

&=l.5-jl.5

+---a-
,..51 I

10’ 102 NP 103

(a)

Present method ]

Hayata et al [9]

~ol

m~o

*o.~
10’ 2

103
(by

Fig. 5. (a) Therelative error in the finite-element solutions of thereat
part of thepropagation constant, ~', forthefundmentd TElO and the
higher order TEOl modes in the lossy dielectric-loaded rectangular
waveguide (inset) as a function of the number of nodal points, using
square first-order elements. (b) Therelative error inthe imaginary part,
~“, of the propagation constant corresponding to errors in the rest part
shown in Fig. 5(a).

is analyzed using first-order triangular elements. Disper-

sion relations for the three lowest propagating modes are

given in Fig. 6. In this example, one quarter of the wave-

guide has been divided into 36 first-order ordinary triangu-

lar elements utilizing the inherent symmetry for the differ-

ent modes. The accuracy of the higher order modes can, of

course, be improved by increasing the number of elements

or by using higher order interpolation on each element.

Thus, the applicability of the present method is also

demonstrated for the case of curved boundaries, and the
accuracy is shown to be retained when using the triangular

finite elements.

Also for this case, predicted values of 1~’1 and 1~”1 are

usually found to be, respectively, too high and too low.

This is analogous to a prediction of ~2 that is too high or,

equivalently, a prediction of the transversal wavenumber

k; that is too low. A disadvantage related to this fact is

1,0

piko

0,5

1713

#

I
a

I

xent method

act [13]

—0,0 ._L..__L~
1 2 3 koa 4

Fig. 6. The propagation characteristics of a hollow circular waveguide,
as obtained by the presented method using a mesh (inset) consisting of
36 first-order elements. At the external boundary, r, the normat
magnetic induction field, B,, and the tangential electric field, E+ and
E:, are forced to vanish.

that some of the higher order modes, which actually are

cut off, are predicted to have \/3”1>0, and thus get mixed

with the propagating modes in the calculated @‘(u) spec-

trum. However, the former modes seem to be identified by

possessing normalized residuals, according to (la) and

(lb), which are higher than for the latter modes.

D. Anisotropic Slab with Dielectric and Magnetic Losses

As a more advanced example relating to the material

properties, an anisotropic slab with both dielectric and

magnetic losses is studied to verify the general validity of

the present method. It consists of a rectangular waveguide

of dimensions a x 2a loaded at one end with an anisotropic

slab of dimensions a x a. The s]ab has the relative scalar

permittivity c = 2 – jO.2 and the relative tensor permeabil-

11– jO.1 o 0.05 – jO.5

o 1 – .jO.’ o

)1– jO.1 “\ –0.05+ jo.5 o

For the fundamental TEIO and higher order TE20 modes,

a division in 1 x 8 first-order elements gives the complex

dispersion relations shown in Fig. 7, where tlie exact

solutions, attainable from the characteristic equation in

[13], also are plotted. The correspondence is very good

along the whole frequency axis. Note that only eight

first-order rectangular elements are used for both the real

and imaginary parts of the propagation constants.
The corresponding convergence rates are found in Fig.

8, where square first-order elements have been used to

calculate the relative errors in the real and imaginary parts

of the complex propagation constant, for modes propagat-

ing in both the positive and negative z direction. The

resulting convergence order is approximately m = 2.5 for

both modes.
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“1 PresentmethodTE1O

. Present method TE20 I

&4 1
— Exact solution [ 13]

I

2

0

-2

-4

-6
0 1 2 kOa 3

Fig. 7. Complex propagation characteristics for the fundamental TEIO
and higher order TEIO modes in the magnetically anisotropic, magneti-
cally and electrically dissipative slab-loaded rectangular waveguide
(inset). The + and – indices denote modes propagating in, respec-
tively, the positive and negative z directions.

V. CONCLUSION

An advantageous finite-element method for the metal

waveguide problem has been developed by which complex

propagation characteristics may be obtained for arbitrarily

shaped waveguides of arbitrary composition. The method

is based on a straightforward application of the Galerkin

method to the first-order Maxwell curl equations and

comprises all six field components of the electric and

magnetic fields. All the necessary boundary conditions on

the tangential field components, and additionally on the

normal components, are enforced, thus making the final

problem size of the same order, or lower, than for compa-

rable formulations.

With the presented method, no spurious modes have

been observed, and it has been found to possess very good

accuracy and convergence properties in a number of exam-

ples that have been analyzed using both rectangular and

triangular first-order finite elements. Especially when using
the first-order triangular elements, high-order cutoff modes

are found with real propagation constants, as the square of

the propagation constant is usually predicted too high with

the present formulation. However, by calculating the nor-

malized residuals of the solutions, the modes of interest

seem to be identified as having the smallest residuals, and

are hence separated from the ones with larger residuals.
A very important property of the presented formulation

is that the resulting eigenvalue problem is of the sparse

type, suitable for large-size problems, and that it is possi-

ble to treat both the propagation constant and the fre-

quency as an eigenvalue. The resulting matrix equation

may be reformulated in terms of fewer than six field

components, and for some usual cases, the final problem

size may be reduced by a factor of up to 3.

The extension to higher order elements is straightfor-

ward, and by modifications of the method it is possible to

treat other types of waveguides as well, e.g. dielectric

waveguides with impedance walls and open unbounded

dielectric waveguides properly treating the region of infin-

it y.

APPENDIX

The submatrices in (14) are found from (8)-(10) to be

EXX[A] ,XY[A]1[~,1 =kozo~J~[,yx[A1 ,,Y[A] ‘Xdy (Al)

[P21=kozozJJ[:::;]]~~~Y
e

(A2)

[1’3] =kozo~/~[ -j~zx[A1 -jCZYIAl] dxdY (A3)
ee

[P,] =kozo~J/[Ezz[A]] dxdy (A4)
ee

(A6)

[P~l =kozo~j~[ -jPzx[A1 -jPZy[Al] dxd~ (A7)
ee

[P*] =kozo~/J[pzz[A]] dxdy (A8)
ee

(A9)

[R2] =Zo~/f[ -[c] [B]] dXdy (A1O)
ee

(All)

[R,] =zo~jy[[c] -[ B]]dxdy (A12)
ee

[0] -[A] 1[Q,] =zo~/~[[A1 ,01 ~x@

[0] [A] 1[Q,] ‘zo;~~[_[A] [.] ‘xd~

(A13)

(A14)

where the handling of boundary conditions, inherent in

each summation symbol, depends on the origin of each of

the submatrices in (8)–(10), i.e., on the relation between

local and global variables obtained from (2a) -(2h). Thus,

Ze in (A8) should incorporate the boundary conditions



SVEDIN: A NUMERICALLY EFFICIENT FINITE-ELEMENT FORMULATION 1715

10

10

~

~
10

10

10

10

10

\

*+.:.....,..,\\
‘...:.

‘..$:,
... ..>.

R
‘a..

. &

— TE1O B+
R“””” TE1O !3”+

“-.-’+-’-. TE1O B-

‘--0-- TE1O !3”-
—

------* ----

““-”-”*-’-” TE20 !3’-
-. . ..- TE?II R!

TE20 !3’+
TE20 o“+

‘1

~o.,

10’ 102 Np ‘103

Fig. 8. The relative error in the finite-element solutions of ~’ and ~“
corresponding to the modes in Fig. 7 as a function of the number of
nodaf points, using square first-order elements.

relating disjoint [11] variables for Hz (4N if N first-order

rectangular elements) to conjoint variables for HZ ( = N~=

= N), in what concerns both the row and column entries.

Thus [ P8] is a quadratic matrix of dimensions N~z X N~z,

and the other matrices are obtained in analogous fashion if

for each row and column entry the appropriate boundary

conditions between disjoint and conjoint variables are

considered.
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