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A Numerically Efficient Finite-Element
Formulation for the General Waveguide
Problem Without Spurious Modes

JAN A. M. SVEDIN, STUDENT MEMBER, IEEE

Abstract — A numerically efficient finite-element procedure showing no
spurious modes is presented for the analysis of propagation characteristics
in arbitrarily shaped metal waveguides loaded with linear materials of
arbitrary complex tensor permittivity and permeability. The method is
straightforwardly derived from the first-order Maxwell curl equations and
comprises both the transversal and longitudinal components of the electric
and magnetic fields. Hence, all necessary boundary conditions on the
tangential field components are a priori satisfied by the trial functions.
With this formulation an absence of spurious modes has been found.
Furthermore, by also imposing the additional boundary conditions on the
normal components of the magnetic induction and electric displacement
fields, the dimension of the resulting matrix equation may be significantly
reduced. In this formulation both the propagation constant and the fre-
quency may be treated as an eigenvalue of the resulting sparse generalized
eigenvalue problem. For the fundamental modes, both the convergence
order and the accuracy of the presented method are found to be signifi-
cantly higher than those of comparable methods when applied to some
numerical examples.

I. INTRODUCTION

HE FINITE-ELEMENT method has been widely used

during the last two decades in the analysis of wave-
guide components [1]-[9]. With this method propagation
characteristics of arbitrarily shaped waveguides of differ-
ent composition are easily attainable. One drawback that
has limited the use of the method, however, has been the
spurious (nonphysical) solutions [1], [2], [4], [5] apparent in
some of the earlier formulations of the method.

The spurious solutions satisfy the finite-element equa-
tions, but not even approximately the original boundary-
value problem. The problem can be avoided by the use of
a method based on the H-field formulation that is modi-
fied by an enforcement of the constraint v-H =0 on the
trial functions [7] (or an analogous E-field version modi-
fied by the constraint v-D =0 [19]). This constraint has
been empirically found to suppress the spurious modes
present in this formulation. However, the inclusion of the
divergence-free constraint increases the numerical com-
plexity of the resulting eigenvalue problem by decreasing
the matrix sparsity, which is important for the possibility
of handling large-size problems in reasonable amounts of
time and memory [4], [10]. The method has recently been
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generalized to lossy problems [9], but is restricted to mate-
rials with a scalar permeability, i.e., H & B (or scalar
permittivity for the E version, i.e., E < D).

A different approach, in which the spurious solutions
are avoided, is formulated in terms of the transversal field
components ¢, and 4, [8]. Here, the spurious modes are
found to possess complex propagation constants and may
therefore be discriminated when considering propagating
modes in nondissipative waveguides.

In this paper a numerically efficient finite-element for-
mulation is presented that shows no spurious modes and
which may be used to analyze problems involving linear
materials of arbitrary complex tensor permittivity and
permeability. The method is based on a mixed-field formu-
lation [15]-[17] comprising both the transversal and longi-
tudinal components of E and H. It is straightforwardly
derived from the Maxwell curl equations, and as all field
components are considered, all the necessary interelement
and global boundary conditions on the tangential field
components n X E and n X H are easily imposed. The
higher number of field components involved in this formu-
lation does not necessarily increase the dimension of the
final eigenvalue problem (for a given mesh division) as
more boundary conditions may be easily imposed on the
trial functions. Hence, the continuity of the normal com-
ponents of the magnetic induction and electric displace-
ment fields (n-B and n-D) may also easily be imposed,
which significantly reduces the final problem size.

On the other hand, in formulations showing spurious
modes, some of the necessary global and interelement
boundary conditions are not a priori satisfied by the trial
functions. In fact, one reported origin of the spurious
modes [2] is that some of the tangential boundary condi-
tions, which are necessary to unambiguously define the
boundary-value problem, are not satisfied. These so-called
natural boundary conditions are only guaranteed to be
approximately satisfied close to the physically correct solu-
tions [11], [12], but nowhere else. Consequently, spurious
solutions may occur, which are not close to any true
solution and do not satisfy all the necessary boundary
conditions. Two types of spurious solutions may be imag-
ined: one type that satisfies the natural boundary condi-
tions in a wide mean-value sense (as a sum of integrals
along the boundary of each element), but pointwise unfor-

0018-9480,/89 /1100-1708%01.00 ©1989 IEEE



SVEDIN: A NUMERICALLY EFFICIENT FINITE-ELEMENT FORMULATION

tunately not even approximately [2, p. 556}, and another
type that does not satisfy the natural boundary conditions
even in the wide mean-value sense, and hence not the
Maxwell equations within each element.

Numerical examples, using both rectangular and trian-
gular first-order elements, are given for rectangular wave-
guides loaded with dielectric slab, lossy dielectric, and
lossy anisotropic slab and for a circular hollow waveguide.
In none of these cases have spurious modes been found,
and the accuracy for the fundamental modes and the
convergence rate of the eigenvalue are found to be very
high when compared to the magnetic-field [7], [9] and the
transversal-field formulations [8]. For the first-order rect-
angular and triangular elements considered in this paper,
< 6N and between 3N and 6N unknowns are required,
respectively, for N elements to be compared e.g. with
exactly 8N and 6 N unknowns, respectively, required in the
transversal field formulation [8]. Furthermore, by matrix
manipulations of the resulting eigenvalue problem, the
problem dimension may be reduced up to 300 percent, but
with decreased matrix sparsity as a result.

II. THE BOUNDARY-VALUE PROBLEM

Consider the arbitrarily shaped metal waveguide in Fig.
1, which is composed of several different linear materials,
each described by the arbitrary permittivity and permeabil-
ity tensors € and fi. Taking the ordinary harmonic time
dependence e/“* as understood, where w is the real angu-
lar frequency, the source-free Maxwell curl equations are

(1a)
(1b)

where the vectors E, H, B, and D are, respectively, the
electric, magnetic, magnetic induction, and electric dis-
placement field intensities, and ¢, and p, are the vacuum
permittivity and permeability, respectively.

At the interface between two contiguous media i and j
the following conditions are satisfied:

nXE,=n><Ej

V XE=~ joB=— jopfiH
V X H= jwD = jwe,fE

(2a)

nXH=nXxH, (2b)
n-D=n-¢E=n-D=n-¢E, (2¢)
nB=n-{iH=nB=njH (2d)

where » is the interface normal unit vector in the x-—y
plane. On the global boundary T, the appropriate bound-
ary conditions are

nxXE=0 (2e)
nB=n-iH=0 (2f)
on electric walls and
nXH=0 (2g)
n-D=n-éE=0 (2h)

on magnetic symmetry walls.

The classical boundary-value problem is unambiguously
defined by (1a) and (1b) and the tangential boundary
conditions (2a), (2b), (2e), and (2g). Solutions to these
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Fig. 1. The considered problem geometry, which consists of an arbitrar-
ily shaped metal waveguide comprising several linear materials, each
described by arbitrarily complex 3 X 3 matrices € and fi.

implicitly satisfy the Maxwell divergence equations VB =
0 and V-D = 0 and the normal boundary conditions (2c),
(2d), (2f), and (2h).

The presented method is based on a weak finite-element
formulation of the boundary-value problem. It uses (1a)
and (1b) together with an explicit pointwise enforcement
of the boundary conditions (2a), (2b), (2¢), and (2g) on the
test and expansion functions. Boundary conditions (2c),
(2d), (2f), and (2h) are also enforced (additionally) in order
to reduce the size of the final matrix equation.

111

In this paper, the cross section of the waveguide is
divided into a number of finite elements (first-order rect-
angular and triangular elements are considered in the
numerical examples). The six components of the electric
and magnetic fields are then approximated over each ele-
ment in terms of the values at each of the finite-element
nodal points according to

(F=0rliy ) o
where B = B’— jB” is the complex propagation constant,
Z,{N} {0} {o) {0y {0} {0} ]
{0} z{~} o} {0} {0} {0}
{0y {0} Jz{~n} {0} {0} ({0}
{0y {0} {0y {n~} {0} {0}
{oy {0} {o} {0} {~v} {0}
{0} {0} {0y {03 {0} J{N}]

(4)

where Z, = (po/€,)'/? is the intrinsic impedance of vac-
uum and

THE FINITE ELEMENT FORMULATION

[¥]-

{ES. {H.]},
{E}.=|{E]}. (#y. = {4}, O
{E.}. {H.}.

The real kX1 column vector { N} is the element shape
function vector [12], where k is the number of nodal points
on each element; {0} is a k X1 null vector, and T denotes
a matrix transposition. The column vectors { E_ },, {E, }..
{E.}e {Hy}e» {H,)}., and {H,}, are k X1 complex field
vectors representing the nodal point values of, respectively,
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E. /Z, E,/Z, - JE,/Z, H, H, and — jH, on each
element. )

The finite-element solutions E and H are weak solu-
tions [12, ch. 4] of (1a) and (1b) which should satisfy

Zf_[(Et:st'(jV XH+‘°‘O€E)
e e

+HZ*

e (- JVXE+ ""nuoﬁH)) dxdy=0 (6)
for all admissible test functions E,, and H_, where the
appropriate boundary conditions are handled during the
summation 2. over all elements [11]. Here, the necessary
continuity requirements (2a), (2b), (2e), and (2g) on n X E
and n X H are explicitly imposed, but also the additional
requirements (2c), (2d), (2f), and (2h) on n-B and n-D are
enforced.

Using a Galerkin procedure with the finite-element ex-
pansion (3) for both trial and test functions, there results
the following generalized eigenvalue problem:

{E)
{H)

where the column vector is composed of all the unknown
nodal point parameters used to represent E and H in the
waveguide and either 8 or w may be treated as the
eigenvalue. By writing (1a) and (1b) in component form,
the quadratic sparse matrices [ P], [Q], and [R] are found
to be

(o[P]+B[Q)+[R]) (7)

o

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 11, NOVEMBER 1989

A= (N}{N}T (11)

(12)

[Cl={N}a{N}"/3y. (13)

By solving the eigenvalue problem (7), all field compo-
nents for the approximate fields of different eigenmodes in
the waveguide are directly determined and the correspond-
ing eigenvalues 8 (or w) are found.

For loss-free waveguides the regular matrix [ P] is Her-
mitian and real for the usual cases, such as dielectrics and
transversely magnetized ferrites. The singular matrices [Q]
and [R] are always Hermitian.

For resonator problems or the calculation of dispersion
relations in problems with frequency-independent loss-free
materials, it is advantageous to treat the frequency w as
the eigenvalue, because (7) may then be reformulated as a
standard eigenvalue problem, which is Hermitian. Then,
very efficient sparse eigenvalue routines are available [10],
[14].

The boundary conditions have been taken care of by
solving (2a)-(2h) for each nodal point [18]. As an example,
consider the arbitrary internal node point j (using triangu-
lar elements) shown in Fig. 2. The boundary conditions
(2a)~(2h) then require the enforcement of

[B]= (N} a{N)}"/dx

nXE=nXE,_, (14a)
(14b)

where the E,’s and H,’s represent the values of the electric

nIXIIx=n1X[It—1

T ell4]l e L] eld] (o] [0] (0]
o4l o4l jedl (o] [0] (0]
) —jenld] —je,lA] ed]  [0] [0] [0]
(P1=mZ | pq) [0] O poldl  aola]  jula] |59
(0] [0] O pald]l w4 4]
[0 [0] O] —juald]l 4] pald] ®)
[ [0] [o] [o] [o] -—[4] [o]]
O [0 [0] [4] (o] [o]
_ [0] [o] [o] [o] [0] [0]
©1=25f]| o ta] o [ o] [0 |*%
(4] [0 [0] [o] [o] [o]
ol [0 [ [0 [0 [o]] ©)
[0 0 [0 [0 [0 -[c]
O[] [o] [o] [o] [B]
) © [l o] -fcl [B] [o]
RI=2Z [l o [ ] o o [o]*
O[] -[B] [l [0 [o]
[[c] -[B] [0l [o] [o] [o]] (10)
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Fig. 2. The geometry at the internal node point j, in an arbitrary
triangular-element mesh. Generally, the elements contain different
materials, each described by constant matrices €, and fi,, i=1,2,---, 7.

and magnetic fields, respectively, at the node point j in
the element i, and the subscript i runs cyclically modulo r
from 1 to r. In this paper, the additional enforcements of

(14¢)
(14d)

are also made. At the external boundary I' one obtains
similar homogeneous equations for the global boundary
conditions (2e)—(2h) to be satisfied (perfect electric and
magnetic conductors).

Using (14a)-(14d), it can be concluded that the total
number of unknowns is <6N,, where N, is the number of
nodal points. This yields for the first-order rectangular
elements < 6N unknowns, where N is the number of
elements. For comparison, the transversal-field method
uses 8N unknowns for the same type of elements. For the
first-order triangular elements, the required number of
unknowns depends on the mean number of nodal points
per triangle, but lies in the range 3N to 6N, to be com-
pared with exactly 6N for the transversal-field formula-
tion [8].

To further demonstrate the difference between the
method outlined here and the earlier formulations with
regard to the fulfillment of boundary conditions, one
should note that the dimension of the eigenvalue problem
(7) may be reduced by rewriting it in terms of fewer
parameters (field components). As an example, write (7)
with B as eigenvalue in detailed matrix form:

nl.elEl = nz'et-lEz’—l

n-fiH=n-p, H_,

(p] (2] (0] [R]

(7] (2] [R:] [0]

0] [Rs] [A] (2]

(] [ [P] [P
O [ [e] [O17)( (&)
ol [ [0 [ ()]

Bligg 100 10 o] []] (mey |70

ol [ [0 [o1]/|(Hz)

where the [P ]'s, [Q,]’s, and [R,]'s are submatrices of [ P],
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[Q], and [R], respectively (see the Appendix), and the

column vectors { Et}, { Ez}, { Ht}, and { Hz} are parame-
ters used to represent, respectively, the transversal electric,
longitudinal electric, transversal magnetic, and longitudi-
nal magnetic field components for the global assembly of
finite elements. Some elementary matrix algebra applied to
(15) yields the following eigenvalue problem:

(41 (811 [ 10] (e (&)
LC] un]*ﬁhgﬂ [0] ({H@)=° (16)

where

[4]=[P,]- [P2][P4]_1[P3]_[R1][P8]71[R4] (17a)

[B]=“[Pz][P4]_1[R2]_[Rll[Ps]Al[P7] (17b)
[C1=—[R][P,] '[P =[P} Ps] [ R] (17¢)
[D] =[]~ R][P.] ' [R,]~ [ P[] [ 27} (17d)

which is a generalized eigenvalue problem of approxi-
mately 2 /3 the order of the original problem (7) and only
comprising parameters related to the transversal field com-
ponents of E and H. Observe that in (16) all the necessary
tangential boundary conditions are explicitly fulfilled (and
additionally also the normal conditions); this is to be
compared with [8], where the conditions on the longitudi-
nal components are ignored. For all isotropic cases and the
special anisotropic cases where only €,,, €,,, p,, and
B, # 0, the matrices [P,], [ P3], [P4], and [ P;] become zero
with vanishing [B] and [C] as a result. In this case (16)
may be reduced to either one of the two following eigen-
value problems:

([p]1-B2[Q.14] @) {H} =0  (18a)

([41-p*[@[P] '@, 1){E) =0 (18b)
each of dimension only approximately 1/3 that of (7) and
expressed in parameters related to transversal H or
transversal E only. Again observe that in (18a) and (18b)
all the boundary conditions on the tangential components
are incorporated, and additionally also the normal condi-
tions. Equation (18a) has been investigated, and found
to produce the same eigensolutions as (7) (using the rela-
tions between the field components used to obtain (18a)
from (7)).

The most important numerical property of the eigen-
value problem (7) is, however, the O(1/N) sparsity of the
matrices, which means that the number of nonzero matrix
elements on each row is almost independent of the dimen-
sion N. For large-size problems sparse eigenvalue codes
may be used on (7), which will save a significant amount
of CPU time and memory {10]. As more compact forms of
() as (16), (18a), or (18b) are less sparse, it may be
preferable to use (7), despite the roughly 300 percent
reduction of unknowns in, for instance, (18b).

IV. NUMERICAL EXAMPLES

In this section examples where analytical solutions exist
[13] are studied in order to demonstrate the strength of the
present method. In this paper first-order rectangular and
triangular elements are used. In order to easily obtain both



1712
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Exact solution [13]
Present method
B/kO Angkaew et al [8]
101
05T
0,0 :
1 2 koa 3
Fig. 3. The normalized dispersion relations for the fundamental TEj,

and higher order LSM;; modes in the dielectric-slab-loaded rectangular
waveguide (inset). The finite-element division is 4 X8 for both finite-
element solutions.

eigenvectors and eigenvalues, the complex generalized
eigenvalue problem routine NAG F02GJF (in double pre-
cision) is used [14]. With this routine, all the eigenvalues
and eigenvectors of (7) are given but the matrix sparsity is
not considered and consequently the more compact forms
(16) or (18) would probably be faster to execute despite the
necessary matrix inversions involved. As pointed out else-
where [4], [10], the use of sparse matrix routines will
considerably reduce the amount of storage and computa-
tional time needed to solve (7). In fact, for very large
problems, even on a supercomputer, the sparsity of the
eigenvalue problem will be of decisive importance.

A. Dielectric Slab in Rectangular Waveguide

As a first example [8], a rectangular waveguide inhomo-
geneously loaded with a dielectric slab is considered. In
Fig. 3 the calculated and exact [13] dispersion relations for
the fundamental TE,, and the higher order LSM;; mode
are given for a waveguide of dimensions a X2a loaded at
one end with a dielectric slab of dimensions a X a and
relative permittivity e = 2.25. The cross section was divided
into 4 X 8 = 32 elements (6 X 32 =192 variables). For com-
parison, the transversal field (e,—h,) method [8] was coded
using the same type of elements. For this structure using
the same division for both methods, the present method is
more accurate, as is obvious from the dispersion relation
of the LSM,;; mode, and for both modes the present
method shows an error at least one order of magnitude
smaller (in {8] a similar accuracy with the transversal-field
method is obtained using 64 first-order triangular ele-
ments).

A property of considerable importance in any finite-cle-
ment method is the convergence of the solution as the
problem size increases. Here, the convergence rate, m, of
the relative error, e, of the propagation constant as a
function of the number of nodal points, N, in the finite-
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Present method
——+—  Formulation [8]
10"k
I3
3
10°k 3
S—_
LSMy
107F
107 E
kpa=3
10°F 0 - TEl()
107 :
10° 107 Np 10°

Fig. 4. The relative error, e}, mn the finite-clement solutions of the
propagation constants, 8, for the modes in Fig. 3, as a function of the
number of nodal points, N, in the finite-element mesh, using square
first-order elements.

element mesh is studied, assuming that |e| & (N,)™"™ for
large enough N,.

In Fig. 4, |e| is plotted as a function of the number of
nodal points, using square first-order elements, for the two
modes considered above. For both modes, the present
method is found to converge at least quadratically (m > 2)
as on the other hand the transversal field method only
converges linearly (m =1). The present method usually
predicts a too high |8’], in contrast to the transversal field
method, where the predicted values usually are too low.

B. Lossy Dielectric-Filled Rectangular Waveguide

This example consists of a waveguide of dimensions
a X2a filled with a lossy dielectric of complex permittivity
¢=1.5— j0.15. The relative errors of the real and imagi-
nary parts of the propagation constant for the fundamen-
tal TE,, and first higher order TE modes are compared
to the exact solution [13] in Fig. 5(a) and (b) as a function
of the number of nodal points using square first-order
elements. For comparison, the present results are also
compared to the results obtained by the H-field method
[9], where triangular second-order eclements were used.
This comparison is made with respect to the number of
nodal points and should be to the favor of the method
using second-order elements as the higher order elements
are commonly believed to improve the accuracy versus
number of nodal points figure (though reducing the matrix
sparsity). In any case, it shows that the convergence of the
present method also for this structure is roughly quadratic
for both modes, while the other method only converges
roughty linearly. The predicted value of |$”]is usually too
low when compared to the exact solution (cf. the real part
above).

C. Hollow Circular Waveguide

To confirm the applicability of the present method to
curved boundaries, a hollow circular waveguide of radius a
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10 :
Present method
—+— Hayataet al [9]
1 0 0L
® TEq;
k)
10"F 4
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107k 10 J
10°F ]
107 — ;
10 10 Np 10
(2)
10 .
® Present method
B @ Hayata et al [9]
10° ]

107f 3
| \ TEy,;

107 3
3 "[‘E

10

u .
10’ 10 Np 10°
(®)

Fig. 5. (a) The relative error in the finite-element solutions of the real
part of the propagation constant, 8, for the fundamental TE, and the
higher order TEy, modes in the lossy dielectric-loaded rectangular
waveguide (inset) as a function of the number of nodal points, using
square first-order elements. (b) The relative error in the imaginary part,
B”, of the propagation constant corresponding to errors in the real part
shown in Fig. 5(a).

is analyzed using first-order triangular elements. Disper-
sion relations for the three lowest propagating modes are
given in Fig. 6. In this example, one quarter of the wave-
guide has been divided into 36 first-order ordinary triangu-
lar elements utilizing the inherent symmetry for the differ-
ent modes. The accuracy of the higher order modes can, of
course, be improved by increasing the number of elements
or by using higher order interpolation on each element.
Thus, the applicability of the present method is also
demonstrated for the case of curved boundaries, and the
accuracy is shown to be retained when using the triangular
finite elements.

Also for this case, predicted values of || and |B”| are
usually found to be, respectively, too high and too low.
This is analogous to a prediction of 8?2 that is too high or,
equivalently, a prediction of the transversal wavenumber
k2 that is too low. A disadvantage related to this fact is
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Present method
Exact [13]

B/ko ‘
|
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TE TMy,

0,0 L L
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Fig. 6. The propagation characteristics of a hollow circular waveguide,
as obtained by the presented method using a mesh (inset) consisting of
36 first-order elements. At the external boundary, T', the normal

_magnetic induction field, B,, and the tangential electric field, £, and
E,, are forced to vanish.

that some of the higher order modes, which actually are
cut off, are predicted to have |8’ > 0, and thus get mixed
with the propagating modes in the calculated B'(w) spec-
trum. However, the former modes seem to be identified by
possessing normalized residuals, according to (la) and
(1b), which are higher than for the latter modes.

D. Anisotropic Slab with Dielectric and Magnetic Losses

As a more advanced example relating to the material
properties, an anisotropic slab with both dielectric and
magnetic losses is studied to verify the general validity of
the present method. It consists of a rectangular waveguide
of dimensions a X 2a loaded at one end with an anisotropic
slab of dimensions a X a. The slab has the relative scalar
permittivity e = 2— ;0.2 and the relative tensor permeabil-

ity

1— 0.1 0 0.05— j0.5
fi= 0 1— 0.1 0
—0.05+ j0.5 0 1—-j0.1

For the fundamental TE,, and higher order TE,, modes,
a division in 1X8 first-order elements gives the complex
dispersion relations shown in Fig. 7, where the exact
solutions, attainable from the characteristic equation in
[13], also are plotted. The correspondence is very good
along the whole frequency axis. Note that only eight
first-order rectangular elements are used for both the real
and imaginary parts of the propagation constants.

The corresponding convergence rates are found in Fig.
8, where square first-order elements have been used to
calculate the relative errors in the real and imaginary parts
of the complex propagation constant, for modes propagat-
ing in both the positive and negative z direction. The
resulting convergence order is approximately m ~ 2.5 for
both modes.
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Fig. 7. Complex propagation characteristics for the fundamental TE,

and higher order TE,, modes in the magnetically anisotropic, magneti-
cally and electrically dissipative slab-loaded rectangular waveguide
(inset). The + and — indices denote modes propagating in, respec-
tively, the positive and negative z directions.

V. CONCLUSION

An advantageous finite-element method for the metal
waveguide problem has been developed by which complex
propagation characteristics may be obtained for arbitrarily
shaped waveguides of arbitrary composition. The method
is based on a straightforward application of the Galerkin
method to the first-order Maxwell curl equations and
comprises all six field components of the electric and
magnetic fields. All the necessary boundary conditions on
the tangential field components, and additionally on the
normal components, are enforced, thus making the final
problem size of the same order, or lower, than for compa-
rable formulations.

With the presented method, no spurious modes have
been observed, and it has been found to possess very good
accuracy and convergence properties in a number of exam-
ples that have been analyzed using both rectangular and
triangular first-order finite elements. Especially when using
the first-order triangular elements, high-order cutoff modes
are found with real propagation constants, as the square of
the propagation constant is usually predicted too high with
the present formulation. However, by calculating the nor-
malized residuals of the solutions, the modes of interest
seem to be identified as having the smallest residuals, and
are hence separated from the ones with larger residuals.

A very important property of the presented formulation
is that the resulting cigenvalue problem is of the sparse
type, suitable for large-size problems, and that it is possi-
ble to treat both the propagation constant and the fre-
quency as an eigenvalue. The resulting matrix equation
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may be reformulated in terms of fewer than six field
components, and for some usual cases, the final problem
size may be reduced by a factor of up to 3.

The extension to higher order elements is straightfor-
ward, and by modifications of the method it is possible to
treat other types of waveguides as well, e.g. dielectric
waveguides with impedance walls and open unbounded
dielectric waveguides properly treating the region of infin-

ity.

APPENDIX
The submatrices in (14) are found from (8)—(10) to be

kzosz xx[A :xy{j} dxdy (A1)
[P,] =k,Z Z/f s “[A] dxdy (A2)

— je, [ Al dxdy (A3)

[P3]=kozoz_[fe["15

(2] =Koz X [ [ e[ 41] dxdy (A4)
A A

[Ps] “kozozf/; ZXX{A} ﬁxy{A} dxdy (A5)

=koZyY, f/g[jﬁ” A]}dxdy (A6)

[P =koZ, X [[] = il Al =, [4]] axay (A7)

(23] = k020 % [ [[n..[4]] dxdy (A8)
[R,] zosz[ [B]}dxdy (A9)
[R,] =Z"§/fe[ - B]] dxdy (A10)
R;] =ZOXe:ffe[_{§”dxdy (A11)
(r]=2L [[[lc] ~(81]axar (A12)
[0.] Zosz[[A E?)”dxdy (A13)
[0,] ZOfo[ [[ﬂ Ié]]dxdy (A14)

where the handling of boundary conditions, inherent in
each summation symbol, depends on the origin of each of
the submatrices in (8)—(10), i.e., on the relation between
local and global variables obtained from (2a)-(2h). Thus,
Y. in (A8) should incorporate the boundary conditions
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Fig. 8. The relative error in the finite-element solutions of 8’ and B”
corresponding to the modes in Fig. 7 as a function of the number of
nodal points, using square first-order elements. '

relating disjoint [11] variables for H, (4N if N first-order
rectangular elements) to conjoint variables for H, (= Ny,
=~ N), in what concerns both the row and column entries.
Thus [ P;] is a quadratic matrix of dimensions Ny, X Ny,
and the other matrices are obtained in analogous fashion if
for each row and column entry the appropriate boundary
conditions between disjoint and conjoint variables are
considered. )
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